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ABSTRACT

Music is a unique and essential modality constituting human life, presenting chal-
lenges for multimodal advances due to its complex structure and intricate details.
Recent Music Language Models (MuLMs) facilitate music understanding and
generation by leveraging the inherent knowledge and reasoning capabilities of
pre-trained Language Models (LMs), yet they overlook the complementary ben-
efits of different music representations. To this end, we propose a unified music
language model, named UniMuLM, form the existing approach of using a single
representation to multiple music representations. Concerning the unification, we
address the challenges of missing modalities and unstable training to adapt differ-
ent scenarios. Specifically, we integrate symbolic, waveform music, and textual
instructions into an LM and design a bar-level tokenizer to explore the fine-grained
correlations between different modalities. Moreover, we propose a multi-stage
training strategy to progressively enhance this synergy. Trained on open-source
datasets, UniMuLM demonstrates superior performance compared to SOTA meth-
ods across five music tasks, evaluated on nine benchmark datasets. The demo ex-
amples can be accessed via https://anonymous-2024101.github.io.

Figure 1: UniMuLM (our method) is capable of handle a range of music tasks (left), including music
continuation, music knowledge inquiry, and more by taking symbolic, waveform music, and textual
instructions as input. UniMuLM achieves SOTA results (right) on most of music tasks compared to
previsous waveform-based and symbolic-based approaches (the results are normalized such that the
maximum score of all models is 100% for each task).

1 INTRODUCTION

Language Models (LMs) have recently made remarkable progress in various linguistic tasks (Brown
et al., 2020; Team, 2024). By leveraging extensive pre-trained corpora and demonstrating impres-
sive reasoning capabilities, LMs show significant potential for understanding multimodal content,
motivating researchers to explore Multimodal Language Models (MLMs) (Liu et al., 2023; Alayrac
et al., 2022; Wang et al., 2023). Among the diverse modalities, music stands out due to its unique
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Figure 2: Paradigm comparison between our method and prior works in multiple music represen-
tations integration. (a) Prior works focus on utilizing either symbolic or waveform representations,
typically in isolation. (b) In contrast, our approach not only incorporates both representations but
also introduces a unification mechanism that bridges the gap and enhances their synergy.

blend of rhythm, melody, harmony, and lyrics, capable of evoking emotion. This has sparked sig-
nificant interest in developing Music Language Models (MuLMs), which aim to address various
music-related tasks, such as music question answering, inpainting, and continuation (Chu et al.,
2023; Liu et al., 2024; Agostinelli et al., 2023; Deng et al., 2024; Tang et al., 2024) with a single
model.

A pivotal obstacle preventing MuLMs from becoming true experts in music lies in the commonly
adopted approach of treating music representations as either symbolic notations or raw waveforms,
with most models designed to handle only one of these forms. Yet, for music experts, notation and
performance are unified — even Beethoven’s deafness could not stop him from hearing music in his
mind. For example, MidiCaps (Melechovský et al., 2024) extracts meta-information like tonality
and rhythm from MIDI but relies on waveform models for semantic information after synthesis.
This highlights how current research remains fragmented, failing to capitalize on the potential of
integrating both forms. The root cause of this limitation is the temporal scale inconsistency between
music representations. Symbolic music uses uneven time divisions determined by note durations,
while raw waveform signals are represented at a much higher sampling frequency. Despite various
efforts to encode waveforms differently, such as using CNNs for sampling (van den Oord et al.,
2016), VAEs for discrete encoding (Zeghidour et al., 2022), self-supervised representation learn-
ing (Li et al., 2022), or aligning audio with text for global representations (Elizalde et al., 2023),
none have effectively bridged the gap to form a consistent representation with symbolic music. This
inconsistency necessitates models to learn each representation in isolation, preventing the devel-
opment of a unified understanding of music and, thus, the ability to leverage the complementary
strengths of both representations.

However, training a model that unifies these representations for diverse music tasks is inherently
complex. Scenarios where all three modalities (i.e., symbolic, waveform music, and textual instruc-
tion) appear together are rare, while certain tasks require two of them (Ji et al., 2020). This presents
two key challenges for our research: first, exploring how the model can still benefit when one modal-
ity is absent; second, ensuring the stability of multitask training so that tasks enhance rather than
hinder each other.

To this end, we introduce UniMuLM, a Unified Music-Language Model, which is not only com-
patible for both symbolic music and waveforms but also unifies them at a bar level to achieve fine-
grained, mutually reinforced representations. We employ a multi-stage approach to train UniMuLM,
which consists of three stages. First, we start by leveraging music knowledge and symbolic music
datasets (e.g., MusicPile (Yuan et al., 2024) and MelodyHub (Wu et al., 2024)) to inject music knowl-
edge and warm up the LM base model, such as Llama3 (Team, 2024). Next, we train a bar-level
tokenizer using paired symbolic music and waveforms to pre-align and bridge the gap between mu-
sic representations. Lastly, we apply LoRA-tuning (Hu et al., 2022) to the LM and update adapters
for diverse musical representations across all downstream tasks using different datasets, including
MusicCaps (Agostinelli et al., 2023), Song-Describer (Manco et al., 2023), MidiCaps (Melechovský
et al., 2024), and MusicQA (Liu et al., 2024).

Our contributions are threefold. (1) We emphasize the often-overlooked complementarity of mu-
sic representations and propose UniMuLM, a unified framework that integrates symbolic, wave-
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form music, and textual instructions. (2) We explore the fine-grained correlation between different
music representations at the bar level with explicit tokenization in UniMuLM. (3) We benchmark
UniMuLM using both quantitative and qualitative metrics across 9 tasks. The superior performance
on these tasks demonstrates the efficacy of unifying different music representations and the sound-
ness of our design.

2 RELATED WORK

We briefly review the related works from two aspects: Music Encoding, where we explore symbolic
and waveform music representations; and Music Language Models, which expand language models
to incorporate music.

2.1 MUSIC ENCODING

Music encompasses symbolic notation, lyrics, and waveforms produced by instruments and vocal-
ists (Ji et al., 2020), with deep learning-based research generally classifying these representations
into two categories: symbolic and waveform.

Waveform music consists of one-dimensional signals sampled at high frequencies. While some
models directly process raw waveforms (van den Oord et al., 2016; Baevski et al., 2020), a more
commonly adopted approach transforms waveforms into spectrograms using the Fourier Transform
(FT) (Gong et al., 2022), which provides a richer representation of audio information. Additionally,
some models treat waveforms or spectrograms as images and leverage diffusion frameworks for mu-
sic generation (Forsgren & Martiros, 2022). Currently, the most popular method involves converting
music into discrete tokens using Variational Autoencoders (VAEs) (Défossez et al., 2023) for music
generation and text-aligned tasks (Dhariwal et al., 2020; Castellon et al., 2021).

Symbolic music has garnered widespread attention in the deep learning community due to its rep-
resentation of discrete notations. MIDI carries real-time performance and control data for specific
notes and is widely used by musicians and producers globally (Ji et al., 2020). Beyond direct process
with raw MIDI (Hadjeres et al., 2017; Lu et al., 2023; Zeng et al., 2021; Huang et al., 2019; Dong
et al., 2018), many derivative representations of MIDI have emerged, aiming to reduce sequence
length, improve readability, increase information density, and integrate multi-track information. Ex-
amples of such representations include REMI (Huang & Yang, 2020), OctupleMIDI (Zeng et al.,
2021), Humdrum (Cherla et al., 2015), and CompoundWord (Hsiao et al., 2021). Recent studies
highlight ABC notation’s data efficiency, alignment with human compositional practices, and exten-
sive community support, making it a preferred format for MuLM (Yuan et al., 2024; Qu et al., 2024;
Wu et al., 2024). UniMuLM follows the ABC choice of these works.

2.2 MUSIC LANGUAGE MODEL

MuLMs are frameworks that model music understanding or generation as sequential token predic-
tion. MuLMs adapt techniques from other MultiModal-LMs (Alayrac et al., 2022; Driess et al.,
2023; Wang et al., 2023; Liu et al., 2023; Yang et al., 2023; Kong et al., 2024), which have rapidly
evolved due to the knowledge retention, reasoning, and instruction-following abilities of language
models. A key factor determining the performance of MuLMs is how musical representations are
processed and input into the model. And current approaches are basically sorted into two strands:
waveform- and symbolic-based methods.

Waveform-based MuLM encompasses various methods for encoding audio into LM-compatible
inputs, with two main approaches: encoding audio into discrete acoustic tokens or providing audio
features through a trained adapter. The former approach, as explored by Jukebox (Dhariwal et al.,
2020), utilizes a VAE to encode audio into acoustic tokens for music reconstruction, followed by
AudioLM (Borsos et al., 2023), VampNet (Garcı́a et al., 2023), and VALL-E2 (Chen et al., 2024),
which leverage RVQ-VAEs (Zeghidour et al., 2022; Défossez et al., 2023). While these methods are
able to reconstruct finer audio features, they typically require larger-scale training. In contrast, for
the adapter approach, researchers utilize the waveform features extracted by MERT (Li et al., 2024)
and CLAP (Elizalde et al., 2023). For example, Deng et al. (2024) and Tang et al. (2024) use the
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UniMuLM

| C E G | and | G F E |Based on the music, analyze the functions of these stable degrees

LM-Emb

Bar-level Alignment

offers harmonic stability and reinforces the key, while| C E G | | G F E | introduces mild tension.

Unified Tokenization

Adapter Adapter

LanguageModel Inference

LoRA

| C E G |

Mu-EmbMu-Emb Mu-EmbEnCodec

ℒ!

(a) UniMuLM (b) Bar-level Tokenizer

Figure 3: The overall framework of UniMuLM (a), which consists of a unified tokenization and
a base language model. Specifically, UniMuLM takes textual instructions, symbolic and waveform
representations as the input, where different music representations are aligned at the bar level, and
the base language model is fine-tuned to adapt to various music tasks. Notably, UniMuLM employs
a bar-level tokenizer (b), which is trained via contrastive loss and corss-reconstruction loss, to ex-
plicitly model the alignment between symbolic and waveform information.

embeddings encoded by adapters as direct inputs to the LM decoder, while others (Liu et al., 2024)
adopt a cross-attention mechanism.

Symbolic-based MuLM employs two primary tokenization strategies: either creating a pre-defined
or custom-trained tokenizer or using a pre-trained LM’s text tokenizer. For the first approach,
Oore et al. (2020) use on-off representations, the PopMAG (Ren et al., 2020) tokenizer focuses
on duration-based information, while MuPT (Qu et al., 2024) customizes a BPE (Fradet et al., 2023)
tokenizer specifically for ABC notation. These methods require training from scratch. In contrast,
the second approach involves directly using a pre-trained LM’s text tokenizer, treating notations as
second languages. Notable examples include ChatMusician (Yuan et al., 2024), which utilizes the
LLaMA2 tokenizer, allowing it to leverage the world knowledge and reasoning capabilities of large
pre-trained language models.

UniMuLM is compatible with both waveform and ABC notation input. The waveform is processed
through CLAP and MERT, with its features passed through an adapter as embeddings into the initial
layers of LLaMA. ABC is tokenized by the frozen LLaMA3 tokenizer as well as processed by a
bar-level tokenizer, resulting in a dual-representation.

3 PROBLEM FORMULATION

Given a piece of music m = {tm,wm}, where tm and wm denote the symbolic and waveform
representations of m, and the prompt p, which indicates the specific task, e.g., ”Describe the music
in detail” for music captioning, our objective is to obtain a MuLM that can accordingly generate the
desired answer a. Specifically, tm ∈ T lm represents the textual ABC notations consisting of lm text
tokens from the token set T , while wm ∈ Rs·rs is a sequence of sampling points with a duration of
s and a sampling rate of rs. p ∈ T lp and a ∈ T la are similarly sequences of text tokens that define
the downstream tasks and ground-truth answers. According to the general definition of a language
model, we can frame this as an autoregressive estimation: P (ai|p, tm,wm,a1:i−1).

4 UNIFIED MUSIC-LANGUAGE MODEL

UniMuLM consists of a unified tokenization to handle different music representations and textual
instructions, with a language model serving as the backbone, as shown in Figure 3 (a). Moreover, a
multi-stage training strategy is introduced to progressively optimize the parameters.

4.1 UNIFIED TOKENIZATION

To address the issue of incompatibility between different music representations in existing models
and to achieve a unified representation that leverages complementary information, we tokenize the
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different data formats using corresponding tokenization methods. We then introduce a mechanism
of bar-level tokenization to align low-level correspondences across these music representations.

4.1.1 SINGLE-MODAL TOKENIZATION

Instruction Tokenization. We utilize the pre-defined embedding table from the LM to encode
instruction tokens (e.g., , prompt p) via the look-up function LM-Emb : T → Rd, where d denotes
the dimensionality of the textual embedding. Specifically, Ep = LM-Emb(p) ∈ Rlp×d represents
the transformed embeddings, having the same length lp as the input tokens.

Symbolic Tokenization. We encode the symbolic notations into (1) language-level representations
for linguistic comprehension by the LM backbone, and (2) music-level representations via a novel
tokenizer specifically designed for musical understanding. For language-level representation, we
follow the instruction tokenization as formulated: ELM

tm = LM-Emb(tm) ∈ Rlm×d. Inspired by Wu
et al. (2024), we obtain bar-level representations ZMu

bari
= Mu-Emb(bari) ∈ Rlm×dmu via a new

tokenizer Mu-Emb : T → Rdmu , which features music-specialized embedding table.

Waveform Tokenization. We encode the waveform into (1) high-level representations using
CLAP (Elizalde et al., 2023) and MERT (Li et al., 2024), which are specifically designed for mu-
sic retrieval tasks while capturing global semantics and contextual information, and (2) low-level
representations through EnCodec (Roberts et al., 2018), which quantizes continuous music signals
into discrete codes to preserve extensive acoustic details. For high-level tokenization, we obtain
dense features by applying ECLAP

wm
= CLAP(wm) ∈ R1×dc and EMERT

wm
= MERT(wm) ∈ R1×dm

from off-the-shelf encoders for efficiency, where dc and dm represent the latent sizes of the corre-
sponding representations. For low-level tokenization, the lengthy waveform wm is compressed into
ZEnCodec

wm
= EnCodec(wm) ∈ Rs·rc×de , where rc ≪ rs is the frame rate and de is the latent size of

the codes used in Residual Vector Quantization (RVQ) (Zeghidour et al., 2022).

4.1.2 BAR-LEVEL CROSS-MODAL TOKENIZATION

|| | |

BarHeader

L:1/8M:4/4K:G G3 B e2 dB     A D B A  G E D E

1
Bar2

Figure 4: Illustraion of the mapping between
the waveform (top) and ABC notations (bottom)
in the bar level, where the temporal alignment is
highlighted with bidirectional green arrows.

Despite the temporal misalignment between
discrete symbolic notations and continuous
waveforms, both can be divided into associated
segments via bars. For instance, Figure 4 shows
an example where the ABC notation is aligned
with waveform segments, with bar boundaries
explicitly indicated.

Hence, we propose a bar-level tokenizer to ex-
plicitly construct the correspondence between
symbolic and waveform music in a fine-grained
manner, as shown in Figure 3 (b). Specifically,
we retain the header section and split the ABC
tune into bars, tm = {t0m, t1m, · · · , tnm}, where t0m represents the header section, and n represents
the number of bars. Then, we synthesize the corresponding waveform using random instruments
to generate paired ABC-waveform data: bim = tim,wi

m, i ∈ [0, n]. Following the aforementioned
tokenization, we encode each bar as ZMu

tim
and ZEnCodec

wi
m

using Mu-Emb and EnCodec, respectively.

The model follows an autoencoder structure and consists of four components: Symbolic-Encoder,
Wave-Encoder, Symbolic-Decoder, and Wave-Decoder, each built from self-attention layers and
multi-layer perceptrons (MLPs). The encoders are enhanced with positional embeddings and Lay-
erNorm to ensure stable training and effective sequence processing, with more details provided
in the Appendix. The intermediate embeddings for the ABC and waveform inputs are computed
as EMu

tim
= Symbolic-Encoder(ZMu

tim
) ∈ Rd and EEnCodec

wi
m

= Waveform-Encoder(ZEnCodec
wi

m
) ∈ Rd,

matching the hidden dimension of the LM. These embeddings are then cross-reconstructed back
into their respective representation spaces as ẐMu

tim
= Symbolic-Decoder(EEnCodec

wi
m

) and ẐEnCodec
wi

m
=

Waveform-Decoder(EMu
tim

).
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4.2 LANUGUAGE MODEL

As we define in the problem formulation section, the LM backbone takes multimodal embed-
dings processed by a unified tokenizer to generate a sequence of textual tokens a = [a1, . . . , an].
The frozen LM parameters are complemented by a LoRA module trained to predict the next out-
put token. It takes the textual embeddings Ep,E

LM
tm , and the adapter-wrapped music embeddings

EMu
tim

,EEnCodec
wi

m
,ECLAP

wm
,EMERT

wm
, and its output probability is expressed as:

P(ai | p, tm,wm,a1:i−1) = LMLoRA
(
Ep,E

LM
tm ,Adapter(EMu

tim
,EEnCodec

wi
m

,ECLAP
wm

,EMERT
wm

),a1:i−1

)
(1)

4.3 TRAINING STRATEGY

In order to mitigate the challenge of lacking training data where symbolic music, waveform music,
and textual instructions all appear together, we propose a multi-stage training strategy, which in-
cludes three consecutive stages: Knowledge Injection (aligning symbolic music and text), Bar-level
Alignment (aligning symbolic music and waveform), and MultiModal Fine-tuning (using waveform
tasks to align all modalities).

Stage 1: Knowledge Injection We begin with using music knowledge and symbolic music datasets
to warm up the LM base model. Music encoders are disconnected and symbolic music is merely
treated as text. Training is achieved through a negative log-likelihood (NLL) objective, where the
model predicts the next token ai in the sequence based on the previous tokens a1:i−1:

argmin
ΘLoRA

LKI = − 1

la

la∑
i=1

log P(ai | p, tm,a1:i−1). (2)

Stage 2: Bar-level Alignment To align the symbolic and waveform intermediate embeddings within
the shared latent space, we apply NCE (Gutmann & Hyvärinen, 2010) as contrastive loss:

LNCE = − log
exp(cos(EMu

tm ,EEnCodec
wm

)/τ)∑N
i=1 exp(cos(EMu

ti
,EEnCodec

wi
)/τ)

, (3)

where cos(·, ·) represents cosine similarity, τ is a temperature parameter, and N is the number of
negative samples. To mitigate excessive information loss, we apply a cross-reconstruction loss,
represented as: LMu

rec = ∥ẐMu
tm − ZMu

tm∥22, LEnCodec
rec = ∥ẐEnCodec

wm
− ZEnCodec

wm
∥22. Thus, the loss for

bar-level alignment, which combines both contrastive and reconstruction losses, is denoted as:

argmin
ΘBar

LBar = Lcontrastive + LMu
rec + LEnCodec

rec . (4)

Stage 3: MultiModal Fine-tuning In the final stage, we freeze the bar-level Tokenizer, LoRA-
tune the LM and train adapters to accommodate musical representations for all downstream tasks
across different datasets that include symbolic music, waveform music, and textual instructions. We
formally present the final stage training as follows:

argmin
ΘLoRA,ΘAdapter

LMFT = − 1

la

la∑
i=1

log P(ai | p, tm,wm,a1:i−1). (5)

5 EXPERIMENTS

In order to evaluate our proposed UniMuLM, we conduct extensive experiments on 9 downstream
tasks in terms of multimodal music understanding and generation. We explicate the specific experi-
mental settings and evaluation results as follows.
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5.1 IMPLEMENTATION

Hyperparameter Settings. We employ the Llama3-8B as the LM backbone, with a hidden dimen-
sion of 4096, a learning rate of 5e-6, and a total batch size of 16 across 4 devices. We apply a 64-rank
LoRA with α = 16. For the multimodal tokenizer, the adapter modules consist of a self-attention
layer and an MLP, encoding waveform features, ECLAP

wm
and EMERT

wm
, into 8 and 6 tokens, respectively,

while each bar feature EMu
tim

and EEnCodec
wi

m
is encoded as one token, with 4096 dimensions, aligning

with the hidden dimension of Llama3.

Table 1: Statistics of training datasets.
Modality Dataset Task Size Sampled Tokens Waveform Length

Text MP-Knowledge KnowledgeQA 255K 75K 63M -
MP-Summary Summary 500K 5K 4.2M -

+ Symbolic

MP-IrishMAN Generation 340K 60K 5.4M -
MP-JSBChorales Generation 33K 30K 3.2M -
MP-KernScores Generation 10K 10K 1.1M -
MH-continue Continuation 820K 75K 6.6M -
MH-inpaint Inpainting 820K 45K 4.1M -
MidiCaps Captioning 160K 1K 42K -

+ Waveform

LP-MusicCaps Captioning 5.5K 5K 280K 58 Hour
Syn-MidiCaps Captioning 160K 10K 430K 280 Hour
SongDescriber Captioning 0.7K 0.5K 18K 4.2 Hour
MusicQA Reasoning 110K 10K 290K 86 Hour

Training Datasets. Table 1 categorizes the datasets into text, symbolic, and waveform-based. Size
and Sampled denote the total and selected samples for training, Tokens is the total token count,
and Waveform Length represents audio duration in hours. The first category is primarily sourced
from MusicPile (MP) (Yuan et al., 2024), with significant cleaning and downsampling applied to its
Music Knowledge and Music Summary components to filter out data of low relevance. To address
music source bias in MP, we supplemented the symbolic-based datasets with MelodyHub (MH)(Wu
et al., 2024), enhancing their diversity. MidiCaps (Melechovský et al., 2024) was converted to ABC
format and synthesized into waveforms for both symbolic- and waveform-based captioning (noted
as Syn-MidiCaps). Additionally, the waveform-based datasets include LP-MusicCaps (Doh et al.,
2023), SongDescriber (Manco et al., 2023), and MusicQA (Liu et al., 2024). Data resample details
provided in the Appendix.

5.2 QUANTITATIVE EVALUATION

We benchmark UniMuLM across three types of tasks: Music Knowledge Injection, Waveform Mu-
sic Understanding, and Symbolic Music Generation.

Music Knowledge Injection. We evaluate
the model’s music knowledge using Music-
TheoryBench (Yuan et al., 2024), a multiple-
choice dataset derived from college-level
textbooks and exam materials, as shown in
Table 2. To assess the model’s ability to
handle symbolic music-related questions, we
divide the tasks into those with and with-
out Symbolic Notation (SN) and use the 5-
majority-vote strategy to ensure more reli-
able evaluation results.

Table 2: Performance comparison on MusicTheory-
Bench (Multiple Choice Question Accuracy).

Category Model w/o-SN w-SN Overall

General

GPT-3.5 0.392 0.253 0.323
GPT-4 0.567 0.308 0.437
GLM4 0.539 0.285 0.402
Llama2-7B 0.346 0.248 0.297
Llama3-8B 0.371 0.253 0.312

MuLM LTU 0.363 0.243 0.317
ChatMusician 0.385 0.273 0.334

UniMuLM Proposed 0.613 0.393 0.503
w/o Bar-Align. 0.611 0.288 0.448

Baselines include general LLMs and specialized MuLMs to analyze how parameter scales and
training configurations affect music knowledge performance. GLM4 and GPT-4 (Achiam et al.,
2023) perform well on tasks without SN, achieving accuracies of 0.539 and 0.567, but show signif-
icant declines on SN tasks. Models like LTU (Gong et al., 2024), Llama2 (Touvron et al., 2023),
Llama3 (Team, 2024), and GPT-3.5 perform slightly above random chance, reflecting limitations in
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Table 3: Performance comparison on music understanding tasks.

Category Model LP-MusicCaps SongDescriber Syn-MidiCaps MusicQA
BLEU R-L BLEU R-L BLEU R-L BLEU R-L

MuLM

LTU 0.216 0.248 0.222 0.237 0.201 0.223 0.242 0.328
Audio-Flamingo 0.221 0.320 0.218 0.302 0.213 0.297 0.234 0.337
LLark 0.278 0.250 0.243 0.237 0.248 0.268 0.201 0.194
Mu-LLaMA 0.281 0.316 0.278 0.313 0.271 0.306 0.306 0.466

UniMuLM

Proposed 0.262 0.302 0.281 0.334 0.260 0.308 0.285 0.401
w/o Bar-Align. 0.254 0.283 0.274 0.304 0.240 0.284 0.282 0.403
w/o MERT 0.207 0.248 0.273 0.318 0.241 0.261 0.244 0.339
w/o CLAP 0.213 0.259 0.284 0.326 0.237 0.255 0.269 0.347

music knowledge. While larger models like GPT and GLM leverage extensive world knowledge,
ChatMusician, benefiting from sufficient training on SN-related tasks, shows relatively strong per-
formance on w-SN tasks and outperforms open-source models of comparable scale on w/o-SN tasks.
UniMuLM, our proposed model, outperforms both general and specialized models, resulting in an
overall score of 0.503. Ablation studies highlight the critical role of the bar-level alignment mech-
anism, which significantly enhances the model’s ability to process SN. Without this mechanism,
performance on w-SN tasks drops to 0.288, emphasizing its importance for understanding symbolic
music features.

Waveform Music Understanding. We evaluate the performance of various models on
waveform-based music understanding tasks, including LP-MusicCaps (Doh et al., 2023), SongDe-
scriber (Manco et al., 2023), MIDICaps (Melechovský et al., 2024), and MusicQA (Liu et al., 2024),
using BLEU (Papineni et al., 2002) and ROUGE-L (R-L) (Lin, 2004) as evaluation metrics, as shown
in Table 3. The baseline models (Gong et al., 2024; Kong et al., 2024; Gardner et al., 2023; Liu
et al., 2024) all employ adapters to inject waveform features into the large language models. Among
the compared models, Mu-LLaMA achieves the highest scores on MusicCaps (BLEU: 0.281, R-L:
0.316) and MusicQA (BLEU: 0.306, R-L: 0.466), demonstrating its strong capability to generate ac-
curate and well-structured descriptions. UniMuLM achieves comparable results, performing weaker
on the longer-text LP-MusicCaps but demonstrating better performance on the shorter-text SongDe-
scriber and MusicQA. The ablation study underscores the bar-level alignment module’s importance
for waveform tasks and the necessity of MERT and CLAP encoding. Removing bar-level alignment
(w/o Bar-Align) significantly reduces performance, especially on MusicCaps. Similarly, excluding
MERT (w/o MERT) or CLAP (w/o CLAP) degrades performance across all tasks. MusicQA is
most impacted by MERT removal, while MusicCapsand SongDescriber are more affected by CLAP
removal.

Table 4: Performance comparison on symbolic music generation tasks.

Category Model Continuation Inpainting
Acc Valid RC BLEU R-L Acc Valid RC BLEU R-L

General

GPT-3.5 0.520 0.895 0.543 0.134 0.253 0.303 0.954 0.230 0.108 0.107
GPT-4 0.586 0.912 0.645 0.341 0.556 0.330 0.963 0.255 0.122 0.282
GLM4 0.520 0.865 0.602 0.301 0.471 0.342 0.910 0.243 0.123 0.273
Llama2-7B 0.334 0.651 0.401 0.089 0.102 0.281 0.768 0.103 0.094 0.106
Llama3-8B 0.502 0.756 0.457 0.205 0.213 0.312 0.799 0.120 0.114 0.121

MuLM MuPT - 0.694 0.197 0.120 0.172 - - - - -
ChatMusician 0.553 0.852 0.630 0.487 0.532 0.454 0.885 0.121 0.069 0.082

UniMuLM Proposed 0.681 0.950 0.650 0.489 0.646 0.632 0.961 0.341 0.142 0.284
w/o Bar-Align. 0.652 0.948 0.638 0.482 0.598 0.612 0.965 0.321 0.132 0.265

Symbolic Music Generation. We evaluate symbolic music generation capabilities on continua-
tion and inpainting tasks, constructed from randomly selected cases in the validation set of the
MelodyHub (Wu et al., 2024) dataset. Both tasks include multiple-choice questions, evaluated using
5-majority-vote accuracy (Acc), as well as generation assessed through text-based metrics such as
BLEU and ROUGE-L (R-L), and music-specific metrics such as Rhythmic Consistency (RC) and
Validity (Valid), as shown in Table 4. RC evaluates rhythm patterns by assigning identical pitches
to all notes and calculating BLEU scores, while Validity checks ABC notation syntax, with issues
typically involving beat counts or barline errors.
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These metrics measure different aspects of the model’s music generation ability. Accuracy reflects
whether the model can distinguish different musical patterns, Validity assesses if the model under-
stands the format of ABC notation, Rhythmic Consistency evaluates the model’s ability to mimic
rhythm, while BLEU and R-L directly measure the distance from the ground truth. General models,
represented by GPT-4, achieve reasonable performance in continuation tasks, reflecting their strong
few-shot learning capabilities with textual input. In contrast, the music-specific MuPT struggles due
to the lack of instruction tuning, making it less applicable across multiple tasks. ChatMusician out-
performs general models in the continuation task, yet falls short in the more challenging inpainting
task, which is absent from its training data, and even struggles to generate rhythmically coherent
music compared to general models. UniMuLM excels in generating syntactically valid, rhythmi-
cally consistent music, outperforming all baselines. Ablation studies confirm the critical role of the
bar-level alignment mechanism, with its absence causing notable declines in RC and accuracy across
both tasks.

LTU

LLark

Mu-LLaMA

Audio-Flamingo

Human Evaluation on 

Waveform Music Understanding

b)

Win RateWin Rate

Human Evaluation on 

Symbolic Music Generation

a)

MuPT

Llama3

ChatMusician

GPT-4

Figure 5: Human evaluation results between UniMuLM and baseline models, where the win rates
are calculated from testers’ binary ratings on (a) symbolic music generation (assessed by overall feel-
ing, emotional consistency, and structural integrity) and (b) waveform music understanding (based
on precision and recall).

5.3 HUMAN EVALUATION

Quantitative evaluation has inherent limitations in fully capturing the quality of music understanding
and generation. Specifically, for music understanding, while BLEU and ROUGE-L scores offer
measurable outcomes, they often cannot distinguish between accurately capturing key information
and merely matching a template. Likewise, in music generation, using ground truth as a reference
overlooks the fact that valid, appealing outputs can be diverse and non-unique. To bridge these gaps,
we conduct human evaluation.

The results of the human evaluation are shown in Figure 5. For music generation, we randomly
select 32 pieces of valid generated music notation for comparison and ask testers to evaluate the
generated music in terms of overall feel, emotional consistency, and structural integrity. For the mu-
sic understanding tasks, we randomly sample data from LP-MusicCaps, SongDescriber, MIDICaps,
and MusicQA. For each sample, we provide the results from UniMuLM along with outputs from
two of the baseline models. We request that testers rank the three output results based on precision
and recall of valid information.

UniMuLM consistently outperforms other models in music generation quality, particularly exceed-
ing the performance of generative models like Llama3 and GPT-4. In terms of music understanding
capabilities, UniMuLM’s precision surpasses that of existing baselines, while the richness of its
output is comparable to other models but falls short of LLark.
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6 CONCLUSION

In this work, we proposed unifying different music representations (i.e., symbolic and waveform
music) and textual instructions with a pre-trained large language model. Specifically, we introduced
a novel framework, named UniMuLM, characterized by a unified tokenization process to handle
multiple input modalities and specifically model the correspondence between waveform and sym-
bolic representations at the bar level. To train UniMuLM efficiently and effectively, we also applied
a multi-stage training strategy to optimize the model on open-source datasets. Extensive empirical
results across nine music tasks demonstrate the effectiveness of UniMuLM and underscore the ratio-
nale for integrating different music representations. Our work advances the state of MuLMs, where
existing works solely rely on a single music representation, to the utilization of multiple representa-
tions. Hence, our work paves the way for comprehensive music understanding while contributing to
the family of multimodal language models.

7 DISCUSSION

Limitations. Despite UniMuLM achieves remarkable performance across various music tasks, there
are three main limitations: (1) symbolic infomation lossing (2) limitations in the robustness of bar-
level alignment module and (3) constrained training scale. The first limitation arises from the sim-
plification of key signatures in symbolic music training. To ensure training stability, our model
converts all major keys to C and minor keys to A minor to match the actual pitch during perfor-
mance. However, this risks losing key-specific features that are critical for capturing tonal subtleties
and preserving the emotional and structural identity of the music. Such an approach can obscure the
distinct characteristics and significance of different musical keys. The second limitation lies in the
construction of the bar-level alignment module. Currently, it only processes single-track music syn-
thesized with a single instrument. While effective, this setup lacks the ability to handle multi-track
compositions or diverse instrumentation, and it does not account for real-world scenarios involving
noisy, non-synthetic music. These factors limit the robustness and generalizability of the model.
The third limitation is related to the model’s quantization and fine-tuning methods. To ensure ex-
perimental efficiency, we applied 4-bit quantization and used LoRA for fine-tuning, which may
constrain the model’s performance. Although we trained the model on approximately 80 million
tokens—surpassing typical LoRA tuning scenarios—full-scale supervised fine-tuning may be more
suitable in some cases. Additionally, only a portion of the available dataset was used, which limits
the model’s potential. Leveraging larger models and more extensive datasets could significantly en-
hance music understanding, offering opportunities for improved performance through broader data
usage and alternative fine-tuning methods.

Future Work. Future work will focus on four directions: (1) retaining key-specific features, (2)
enhancing bar-level alignment with multi-track and real-world music, (3) scaling up the model and
dataset, and (4) generating waveform music end-to-end. First, we will encode both key-biased and
key-unbiased notation representations, thus enhancing the current approach by adding explicit key
feature extraction. Second, we will improve the bar-level alignment module by incorporating multi-
track compositions and using multiple synthesizers to generate training data. Furthermore, future
iterations will include real-world, noisy music to enhance the model’s robustness. This approach will
ensure that the alignment mechanism better reflects the complexity and diversity of actual musical
scenarios, making the model more versatile and reliable. Third, we will explore using higher-bit
quantization or full-scale SFT to improve model performance. Since the quality and scale of SFT
data significantly influence the model’s effectiveness, efforts should be made to develop fine-grained
datasets that better capture temporal structures in music. At the end, we will extend the existing
model to generate waveform music end-to-end, thereby broadening the application of UniMuLM.
For example, it could support a wider variety of symbolic music notations, such as MIDI, or integrate
codified waveform music, such as EnCodec tokens, as interleaved inputs, enabling the model to
directly generate waveform music.
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A ETHICS STATEMENT

A.1 USE OF OPEN-SOURCE DATASETS

The training datasets used in this study are categorized into pure text, symbolic-based, and
waveform-based. All datasets were sourced from publicly available repositories: MusicPile1, Mu-
sicTheoryBench2, MelodyHub3, MidiCaps4, LP-MusicCaps5, SongDescriber6, and MusicQA7. All
data preprocessing steps ensured compliance with licensing terms, and no proprietary datasets were
used in this study.

A.2 POTENTIAL IMPACTS OF GENERATED CONTENT

The model’s ability to generate music introduces several potential risks that warrant careful consid-
eration:

Bias and Cultural Sensitivity: Generated content may inadvertently reflect biases present in the
training data, as the datasets used could inherently carry cultural, stylistic, or demographic imbal-
ances. These biases might result in music that favors certain genres, styles, or cultural norms while
neglecting others. Additionally, the model might struggle to fully capture the nuances and sub-
tleties of diverse musical cultures, potentially leading to outputs that are perceived as stereotypical,
insensitive, or unrepresentative.

Misuse and Ethical Concerns: The model’s capabilities could be misused to produce music that
is culturally inappropriate, offensive, or plagiarized. The model could produce content intended to
mock or degrade specific cultures or communities, exacerbating ethical concerns around the respon-
sible use of AI in creative domains.

Copyright Issues: Although the datasets used in this research are open-source and comply with
licensing terms, there remains a risk of the model generating outputs that inadvertently resemble

1https://huggingface.co/datasets/m-a-p/MusicPile
2https://huggingface.co/datasets/m-a-p/MusicTheoryBench
3https://huggingface.co/datasets/sander-wood/melodyhub
4https://github.com/AMAAI-Lab/MidiCaps
5https://github.com/seungheondoh/lp-music-caps.git
6https://huggingface.co/datasets/renumics/song-describer-dataset
7https://huggingface.co/datasets/mu-llama/MusicQA/tree/main
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copyrighted works. This could occur due to overfitting on specific pieces of training data or the
model’s reliance on patterns present in the source material.

B IMPLEMENTATION OF BASELINES

General-Purpose Models We include several widely used large language models as baselines for
single track symbolic music generation:

• GPT-3.58: Known for its strong language understanding and reasoning capabilities, GPT-
3.5 serves as a robust baseline for tasks requiring textual and symbolic comprehension.

• GPT-49: As an advanced version of GPT-3.5, GPT-4 incorporates improved reasoning and
multimodal capabilities, making it a competitive model for text-heavy music tasks.

• Llama2-7B10: This open-source model is recognized for its efficiency and effectiveness in
general language understanding, making it a solid choice for evaluating text-based music
tasks.

• Llama3-8B11: As a scaled-up version of Llama2, this model provides additional capacity
for handling complex reasoning tasks, serving as a strong baseline.

• GLM412: A versatile general-purpose model optimized for multimodal tasks, GLM4
bridges textual and contextual understanding, enabling comparisons on multimodal mu-
sic tasks.

Music-Specific Models We compare UniMuLM with several models designed for symbolic or
waveform-based music understanding and generation:

• ChatMusician13: This model specializes in symbolic music generation and understanding,
leveraging MusicPile14 datasets for training.

• MuPT15: A purely symbolic music model based on a decoder-only Transformer architec-
ture, trained from scratch. MuPT excels in melody generation and continuation tasks but
lacks natural language understanding.

• LTU16: Trained on a 5M audio QA dataset, LTU exhibits general understanding and rea-
soning capabilities for both audio and music.

• Audio-Flamingo17: Incorporats xattn-dense layers from Flamingo18 to condition on audio
inputs effectively.

• LLark19: Trained on language model-enhanced music metadata, utilizing CLAP as an
encoder, and achieving impressive results in tasks such as key estimation, tempo estimation,
genre classification, and instrument identification.

• Mu-LLaMA20: Trained on the MusicQA dataset of open-ended music-related questions.
It integrates MERT features into a LLaMA backbone via an adapter and excels in music-
related QA tasks.

Other Baselines We have prioritized implementing the above baselines. However, there are several
notable works that are worth attention and may be included in future revisions:

8https://platform.openai.com/docs/models#gpt-3-5
9https://platform.openai.com/docs/models#gpt-4

10https://huggingface.co/meta-llama/Llama-2-7b
11https://github.com/facebookresearch/llama
12https://huggingface.co/THUDM/glm-4-9b-chat
13https://github.com/m-a-p/ChatMusician
14https://huggingface.co/datasets/m-a-p/MusicPile
15https://huggingface.co/m-a-p/MuPT-v1-8192-1.97B
16https://github.com/YuanGongND/ltu
17https://github.com/NVIDIA/audio-flamingo.git
18https://github.com/deepmind/Flamingo
19https://github.com/spotify-research/llark.git
20https://github.com/shansongliu/MU-LLaMA.git
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• GPT-4o21: An advanced extension of GPT-4 designed for optimized performance in mul-
timodal reasoning tasks.

• SALMONN22: A model with LoRA tuning from Vicuna LLM, designed for general audio
tasks including speech, audio events, and music. It employs a window-level Q-Former as
the adapter. The authors claim that, with relatively low training overhead, it retains and
regains the emergent abilities of the original model.

• Qwen-Audio223: A Large-Scale Audio-Language model for general audio tasks, with a
focus on enabling multi-turn dialogues and supporting diverse audio-oriented scenarios.

• MusiLingo24: Employ MERT-330M as the music encoder and Vicuna-7B as the language
model. Trained on created MusicInstruct datasets which features 60,493 Q&A pairs cov-
ering both general questions like music summarisation, and specific questions related to
music genres, moods, and instruments.

C HUMAN EVALUATION DETAILS

For the music generation evaluation, we select 32 music pieces generated by UniMuLM and four
baseline models (GPT-4, Llama3, MuPT, and ChatMusician), synthesized using Piano, Flute, Saxo-
phone, and Violin to capture a range of melodic and timbral features. Testers were asked to assess
each piece across three categories: the overall aesthetic quality or feel of the music, the emotional
consistency conveyed throughout the piece, and the structural integrity in terms of coherence and
logical progression.

For the evaluation of music understanding, we sampled data from multiple benchmark datasets, in-
cluding LP-MusicCaps, SongDescriber, MIDICaps, and MusicQA. For each task, the outputs gener-
ated by UniMuLM were presented alongside the results from two randomly selected baseline mod-
els. Testers were instructed to rank the models’ outputs based on two key criteria: precision, which
measures the relevance of the information to the given query, and recall, which evaluates the com-
pleteness of the meaningful content captured. This process aimed to assess the extent to which each
model effectively captured critical details while minimizing irrelevant or extraneous information.
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Figure 6: Distribution of participants’ familiarity with music. Scores range from 1 (minimal expo-
sure) to 5 (formal training).

We collect responses from 28 participants. To assess their familiarity with music, we included a
preliminary question: ”How much do you engage with music?” The scoring scale ranged from 1 to
5, where 1 indicated minimal exposure (e.g., rarely listening to music), 2 represented frequent music
listening, 3 implied the ability to play an instrument or participation in activities like a choir, 4 de-
noted proficiency in at least one musical instrument, and 5 indicated formal training in music theory
or composition. The distribution of participants’ scores is visualized in Figure 6. This distribution
aligns with or slightly exceeds the general population’s level of musical appreciation. Based on this,

21https://platform.openai.com/docs/models#gpt-4o
22https://github.com/bytedance/SALMONN.git
23https://github.com/QwenLM/Qwen2-Audio.git
24https://github.com/zihaod/MusiLingo
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we opted not to apply weighted adjustments to their ratings and treated all participants’ responses
with equal weight.
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